Toward Secure Federated Learning for IoT Using DRL-Enabled Reputation Mechanism

Noora Mohammed Al-Maslamani*, Bekir Sait Ciftler, Mohamed Abdallah, Mohamed M.E.A. Mahmoud

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Federated learning (FL) has emerged to leverage datasets from multiple devices to improve the performance of a machine learning (ML) model while providing privacy preservation for devices. The training data is collected at the devices, also known as FL workers, which collaboratively train a global learning model and share their local model updates with a central entity or server without sharing their data. However, FL can be susceptible to various adversarial attacks that target its security and privacy. In particular, the workers can upload unreliable local model updates, leading to corruption of the main FL task. Workers may intentionally contribute unreliable local updates by launching poisoning attacks or unintentionally by updating low-quality models caused by high device mobility, limited device resources, or unstable network connection. Consequently, identifying reliable and trustworthy workers becomes critical for FL security. In this article, the concept of reputation is adopted as a metric to evaluate workers' reliability and trustworthiness. In addition, deep reinforcement learning (DRL)-based reputation mechanism is proposed for optimal selection and evaluation of reliable FL workers. Due to the dynamic nature of worker behavior in the FL environment, the DRL-based algorithm deep deterministic policy gradient (DDPG) is employed to improve the FL model accuracy and stability. We compare the performance of our proposed method with a conventional reputation method and deep $Q$ -networks (DQNs)-based reputation method. Our simulation results demonstrate that our proposed method can improve FL accuracy by more than 30% under various scenarios and achieves better convergence than the other methods.

Original languageEnglish
Pages (from-to)21971-21983
Number of pages13
JournalIEEE Internet of Things Journal
Volume9
Issue number21
DOIs
Publication statusPublished - 1 Nov 2022

Keywords

  • Federated learning (FL)
  • neural networks
  • poisoning attack
  • reinforcement learning (RL)
  • reputation management

Fingerprint

Dive into the research topics of 'Toward Secure Federated Learning for IoT Using DRL-Enabled Reputation Mechanism'. Together they form a unique fingerprint.

Cite this