Towards the development of novel hybrid composite steel pipes: Electrochemical evaluation of fiber-reinforced polymer layered steel against corrosion

Fatima Ghassan Alabtah*, Elsadig Mahdi, Faysal Fayez Eliyan, Elsadig Eltai, Marwan Khraisheh

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Corrosion remains one of the major and most costly challenges faced by the steel industry. Various fiber-reinforced polymer coating systems have been proposed to protect metallic piping distribution networks against corrosion. Despite increasing interest among scientific and industrial communities, there is only limited predictive capability for selecting the optimum composite system for a given corrosive condition. In this study, we present a comprehensive evaluation of the electrochemical behavior of two different fiber-reinforced polymer composite systems against the corrosion of carbon steel pipes under a wide range of acidic and corrosive solutions. The composites were made of glass and Kevlar fibers with an epoxy resin matrix and were subjected to corrosive solutions of 0.5 M NaCl, 0.5 M HCl, and 0.5 M H2SO4 . The kinetics of the corrosion reactions were evaluated using potentiodynamic polarization (PDP) tests. In addition, electrochemical impedance spectroscopy (EIS) tests were carried out at open circuit potentials (OCPs). It was demonstrated that the glass fiber-reinforced polymer coating system offered the best protection against corrosion, with a high stability against deterioration when compared with epoxy and Kevlar fiber-reinforced polymer coating systems. Scanning electron microscopy images revealed cracks and deteriorated embedded fibers due to acid attack, sustained/assisted by the diffusion of the corrosion species.

Original languageEnglish
Article number3805
JournalPolymers
Volume13
Issue number21
DOIs
Publication statusPublished - 1 Nov 2021
Externally publishedYes

Keywords

  • Composite
  • Corrosion
  • Fiber-reinforced polymer
  • Pipeline
  • Steel

Fingerprint

Dive into the research topics of 'Towards the development of novel hybrid composite steel pipes: Electrochemical evaluation of fiber-reinforced polymer layered steel against corrosion'. Together they form a unique fingerprint.

Cite this