Abstract
We report on the transport properties of the super-honeycomb lattice, the band structure of which possesses a flat band and Dirac cones, according to the tight-binding approximation. The super-honeycomb model combines the honeycomb lattice and the Lieb lattice and displays the properties of both. It also represents a hybrid fermionic and bosonic system, which is rarely seen in nature. By choosing the phases of input beams properly, the flat-band mode of the super-honeycomb lattice will be excited and the input beams will exhibit strong localization during propagation. On the other hand, if the modes of Dirac cones of the super-honeycomb lattice are excited, one will observe conical diffraction. Furthermore, if the input beam is properly chosen to excite a sublattice of the super-honeycomb lattice and the modes of Dirac cones with different pseudospins, e.g., by the three-beam interference pattern, the pseudospin-mediated vortices will be observed. (Figure presented.).
Original language | English |
---|---|
Article number | 1600258 |
Journal | Annalen der Physik |
Volume | 529 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Mar 2017 |
Externally published | Yes |
Keywords
- Dirac cone
- flat band
- pseudospin
- super-honeycomb lattice