TY - GEN
T1 - Two-phase flow visualization for a hybrid heat sink
AU - Rahman, Danish
AU - Almomani, Ahmad
AU - Hassan, Ibrahim
AU - Al-Hamidi, Yasser
AU - Rahman, Aziz
N1 - Publisher Copyright:
© 2018 American Society of Mechanical Engineers (ASME). All right reserved.
PY - 2018
Y1 - 2018
N2 - This paper aimed to study two-phase flow under adiabatic conditions through the process of flow visualization. This was done through the use of a test section with a cross flow and a jet impingement (swirl jet). The flow regimes under different air-water flow rates were determined using a high-speed camera that recorded digital videos. For each of the flow rates the pressure differential between the inlet and the outlets were measured. Through the pressure drop it is proposed that the types of flow regimes may later be able to be predicted. Nine air-water flow rates were considered to collect data and generate a flow map for the impingement jet and cross flow. The major observed flow regimes within the crossflow and impingement jet followed the predicted trend with bubbly and plug flow in the former, and slug flow in the latter. It was further observed that increasing the air flow rate increased the likelihood of bubbly and plug flow in both the cross-flow and impingement jet. In the cross flow, a lower air flow rate resulted in bubbly flow while within the impingement jet, a lower air flow rate resulted in slug flow.
AB - This paper aimed to study two-phase flow under adiabatic conditions through the process of flow visualization. This was done through the use of a test section with a cross flow and a jet impingement (swirl jet). The flow regimes under different air-water flow rates were determined using a high-speed camera that recorded digital videos. For each of the flow rates the pressure differential between the inlet and the outlets were measured. Through the pressure drop it is proposed that the types of flow regimes may later be able to be predicted. Nine air-water flow rates were considered to collect data and generate a flow map for the impingement jet and cross flow. The major observed flow regimes within the crossflow and impingement jet followed the predicted trend with bubbly and plug flow in the former, and slug flow in the latter. It was further observed that increasing the air flow rate increased the likelihood of bubbly and plug flow in both the cross-flow and impingement jet. In the cross flow, a lower air flow rate resulted in bubbly flow while within the impingement jet, a lower air flow rate resulted in slug flow.
UR - http://www.scopus.com/inward/record.url?scp=85056166482&partnerID=8YFLogxK
U2 - 10.1115/FEDSM2018-83363
DO - 10.1115/FEDSM2018-83363
M3 - Conference contribution
AN - SCOPUS:85056166482
T3 - American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
BT - Fluid Machinery; Erosion, Slurry, Sedimentation; Experimental, Multiscale, and Numerical Methods for Multiphase Flows; Gas-Liquid, Gas-Solid, and Liquid-Solid Flows; Performance of Multiphase Flow Systems; Micro/Nano-Fluidics
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, FEDSM 2018
Y2 - 15 July 2018 through 20 July 2018
ER -