TY - GEN
T1 - Using joint models for domain adaptation in statistical machine translation
AU - Durrani, Nadir Khan
AU - Sajjad, Hassan
AU - Joty, Shafiq
AU - Abdelali, Ahmed
AU - Vogel, Stephan
PY - 2015
Y1 - 2015
N2 - Joint models have recently shown to improve the state-of-the-art in machine translation (MT). We apply EM-based mixture modeling and data selection techniques using two joint models, namely the Operation Sequence Model or OSM — an ngram-based translation and reordering model, and the Neural Network Joint Model or NNJM —a continuous space translation model, to carry out domain adaptation for MT. The diversity of the two models, OSM with inherit reordering information and NNJM with continuous space modeling makes them interesting to be explored for this task. Our contribution in this paper is fusing the existing known techniques (linear interpolation, cross-entropy) with the state-of-the-art MT models (OSM, NNJM). On a standard task of translating German-to-English and Arabic-to-English IWSLT TED talks, we observed statistically significant improvements of up to +0.9 BLEU points.
AB - Joint models have recently shown to improve the state-of-the-art in machine translation (MT). We apply EM-based mixture modeling and data selection techniques using two joint models, namely the Operation Sequence Model or OSM — an ngram-based translation and reordering model, and the Neural Network Joint Model or NNJM —a continuous space translation model, to carry out domain adaptation for MT. The diversity of the two models, OSM with inherit reordering information and NNJM with continuous space modeling makes them interesting to be explored for this task. Our contribution in this paper is fusing the existing known techniques (linear interpolation, cross-entropy) with the state-of-the-art MT models (OSM, NNJM). On a standard task of translating German-to-English and Arabic-to-English IWSLT TED talks, we observed statistically significant improvements of up to +0.9 BLEU points.
M3 - Conference contribution
BT - Proceedings of Machine Translation Summit
ER -