WaveCluster with differential privacy

Ling Chen, Ting Yu, Rada Chirkova

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Citations (Scopus)

Abstract

WaveCluster is an important family of grid-based clustering algorithms that are capable of finding clusters of arbitrary shapes. In this paper, we investigate techniques to perform WaveCluster while ensuring differential privacy. Our goal is to develop a general technique for achieving differential privacy on WaveCluster that accommodates different wavelet transforms. We show that straightforward techniques based on synthetic data generation and introduction of random noise when quantizing the data, though generally preserving the distribution of data, often introduce too much noise to preserve useful clusters. We then propose two optimized techniques, PrivTHR and PrivTHREM, which can significantly reduce data distortion during two key steps of WaveCluster: the quantization step and the significant grid identification step. We conduct extensive experiments based on four datasets that are particularly interesting in the context of clustering, and show that PrivTHR and PrivTHREM achieve high utility when privacy budgets are properly allocated, conforming to our theoretical analysis.

Original languageEnglish
Title of host publicationCIKM 2015 - Proceedings of the 24th ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages1011-1020
Number of pages10
ISBN (Electronic)9781450337946
DOIs
Publication statusPublished - 17 Oct 2015
Event24th ACM International Conference on Information and Knowledge Management, CIKM 2015 - Melbourne, Australia
Duration: 19 Oct 201523 Oct 2015

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings
Volume19-23-Oct-2015

Conference

Conference24th ACM International Conference on Information and Knowledge Management, CIKM 2015
Country/TerritoryAustralia
CityMelbourne
Period19/10/1523/10/15

Keywords

  • Clustering
  • Differential privacy
  • Wavelet transform

Fingerprint

Dive into the research topics of 'WaveCluster with differential privacy'. Together they form a unique fingerprint.

Cite this