Weighted Trustworthiness for ML Based Attacks Classification

Zina Chkirbene, Aiman Erbad, Ridha Hamila, Ala Gouissem, Amr Mohamed, Mohsen Guizani, Mounir Hamdi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Citations (Scopus)

Abstract

Recently, machine learning techniques are gaining a lot of interest in security applications as they exhibit fast processing with real-time predictions. One of the significant challenges in the implementation of these techniques is the collection of a large amount of training data for each new potential attack category, which is most of the time, unfeasible. However, learning from datasets that contain a small training data of the minority class usually produces a biased classifiers that have a higher predictive accuracy for majority class(es), but poorer predictive accuracy over the minority class. In this paper, we propose a new designed attacks weighting model to alleviate the problem of imbalanced data and enhance the accuracy of minority classes detection. In the proposed system, we combine a supervised machine learning algorithm with the node1 past information. The machine learning algorithm is used to generate a classifier that differentiates between the investigated attacks. Then, the system stores these decisions in a database and exploits them for the weighted attacks classification model. Thus, for each attack class, the weight that maximizes the detection of the minority classes will be computed and the final combined decision is generated. In this work, we use the UNSW dataset to train the supervised machine learning model. The simulation results show that the proposed model can effectively detect intrusion attacks and provide better accuracy, detection rates and lower false alarm rates compared to state-of-the art techniques.1In this document we will use the words 'node' to represent computing, storage, physical, and virtual machines.

Original languageEnglish
Title of host publication2020 IEEE Wireless Communications and Networking Conference, WCNC 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728131061
DOIs
Publication statusPublished - May 2020
Externally publishedYes
Event2020 IEEE Wireless Communications and Networking Conference, WCNC 2020 - Seoul, Korea, Republic of
Duration: 25 May 202028 May 2020

Publication series

NameIEEE Wireless Communications and Networking Conference, WCNC
Volume2020-May
ISSN (Print)1525-3511

Conference

Conference2020 IEEE Wireless Communications and Networking Conference, WCNC 2020
Country/TerritoryKorea, Republic of
CitySeoul
Period25/05/2028/05/20

Keywords

  • Security
  • accuracy
  • machine learning technique
  • minority classes
  • past information
  • unbalanced data
  • weighted attacks classification

Fingerprint

Dive into the research topics of 'Weighted Trustworthiness for ML Based Attacks Classification'. Together they form a unique fingerprint.

Cite this